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Multi-Objective Aerodynamic
Optimization of Axial Turbine
Blades Using a Novel Multilevel
Genetic Algorithm
In this paper, a new multiploid genetic optimization method handling surrogate models of
the CFD solutions is presented and applied for a multi-objective turbine blade aerody-
namic optimization problem. A fast, efficient, robust, and automated design method is
developed to aerodynamically optimize 3D gas turbine blades. The design objectives are
selected as maximizing the adiabatic efficiency and torque so as to reduce the weight,
size, and cost of the gas turbine engine. A 3D steady Reynolds averaged Navier–Stokes
solver is coupled with an automated unstructured grid generation tool. The solver is
verified using two well-known test cases. The blade geometry is modeled by 36 design
variables plus the number of blade variables in a row. Fine and coarse grid solutions are
respected as high- and low-fidelity models, respectively. One of the test cases is selected
as the baseline and is modified by the design process. It was found that the multiploid
multi-objective genetic algorithm successfully accelerates the optimization and prevents
the convergence with local optimums. �DOI: 10.1115/1.3213558�
Introduction
The design of today’s modern high performance turbo engine

omponents requires fast but detailed design tools. On the other
and, the flow in a turbomachine is extremely complex because of
he presence of blade boundary layers, interaction of rotating and
onrotating blades with the upstage wakes, development of sec-
ndary flow vortices, and overall periodic but still inherently un-
teady flow.

Advanced CFD solvers are capable of analyzing 3D, viscous,
ransonic, and turbulent flows. The increase in the number of CFD
alculations and the complexity of the geometries brings the fact
hat the design engineer needs to handle hundreds of design pa-
ameters and thousands of CFD solutions for different geometries
t different boundary conditions. A way to solve this problem is to
efine an optimization problem, which translates the design engi-
eer’s decision criteria and experiences into a mathematical for-
ulation that a computer can handle.
To solve this optimization problem, an automated, robust, and

ast global optimization technique needs to be employed while
reserving the accuracy of the optimization.

Multi-objective genetic algorithms �MOGAs� are the most
opular among these global optimization techniques, including
ulti-objective aerodynamic shape optimization �1,2�, multidisci-

linary optimization of wings �3,4�, rotor blade design �5�, axial
ompressor optimization �6�, turbine blade cooling �7�, and ther-
odynamic optimization of turbojets �8�.
Although MOGAs are able to converge to the global optimum,

hey require many objective function evaluations. For the optimi-
ation problem of 3D aerodynamic design of turbine blades, ac-
urate objective function evaluations require computationally ex-
ensive high-fidelity Reynolds averaged Navier–Stokes �RANS�
olutions. Hoping the rapid increase in computing power in the
revious decade, genetic algorithm �GA� optimizations coupled
ith 3D RANS solvers appeared in the literature �9,10�. However,
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the computational power of computers converged to a degree
where investments for further improvements are really infeasible.
On the contrary, new sophisticated commercial CFD analysis
tools demand more and more computational power to solve com-
plex problems.

This drawback of genetic algorithms was avoided by using
faster but less accurate low-fidelity 2D solvers such as a Euler
�11� or a Euler/boundary layer coupled flow solvers �8� in the past.
Additionally, parallel processing is implemented to reduce com-
putational time of one GA optimization cycle.

Furthermore, several efforts have been made over recent years,
particularly using MOGAs, applying surrogate models of accurate
solvers. The most popular ones are response surface methodology,
the Kriging model, design of experiments, neural networks, and
the support vector machines. Ratle �12� examined a strategy for
integrating GAs with Kriging models. This work uses a heuristic
convergence criterion to determine when an approximate model
must be updated. The same problem was revisited by El-Beltagy
et al. �13�, where the issue of balancing the design of experiments
is addressed. Jin et al. �14� presented a framework for coupling
GAs and neural network-based surrogate models. This approach
uses both the expensive and approximate models throughout the
search, with an empirical criterion to decide the frequency at
which each model should be used. In Song �15�, a real-coded GA
was coupled with Kriging in structural optimization. A recent
study of Pierret �16� presented the design of turbomachinery
blades by means of function approximation. The concept is based
on the use of online trained artificial neural network �ANN� as a
surrogate model of a RANS solver with a GA optimization algo-
rithm.

As long as a surrogate model is used interchangeably with the
high-fidelity �exact solution� model during a MOGA optimization,
the stationary optimization problem becomes dynamic. Despite
these applications of surrogate models with MOGAs, evolutionary
algorithms face a big convergence problem when solving dynamic
optimization problems �DOPs� �17�. In order to enhance the per-
formance of GAs for DOPs, several approaches have been devel-
oped �18�, such as random immigrants �19,20�, hypermutation
�21�, memory �22–26�, and multipopulation schemes �27�. Further

literature review about the subject can be found in Ref. �17�. All
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f these studies prove the fact that simple multi-objective GAs are
ot suitable as they are for dynamically changing environments
ithout any modification to the GAs themselves. Therefore,
OGA optimization methods proposing interchangeable surro-

ate models with high-fidelity models have the problem of con-
ergence.

The “multiploid” GAs have successfully solved the conver-
ence problem of traditional GAs in dynamic environments
28–30�. However, the aerodynamic optimization problem differs
rom these multiploid GA applications in the fact that:

-the surrogate model already exists
-the problem environment is static

Consequently, in this paper, in order to use a limited computa-
ional budget efficiently, without degrading the optimization qual-
ty, the existing surrogate model is implemented with a modified
ersion of multiploid GAs. First, the low-fidelity surrogate model
vailable for the aerodynamic performance prediction of a turbine
lade is selected as the coarse mesh solution. Then, a distance
ased MOGA is modified to yield a multiploid genetic represen-
ation in order to implement high- and low-fidelity models simul-
aneously and to avoid a convergence problem to the global opti-

um. Finally, the optimization is performed for two different
aximizing objectives: adiabatic efficiency and torque.

3D Blade Shape Parameterization
The geometric model of the 3D blade profile must be defined in

s few as possible parameters in order to simplify the optimization
roblem. On the other hand, a robust geometric model should be
ble to cover distinct blade profiles in every corner of the design
pace, almost entirely, while generating realistic blade profiles.
onsequently, the parameterization of the blade profile should
inimize the possibility of generating geometrically unrealistic

rofiles.
In that sense, the 3D blade is represented by several 2D cylin-

rical surface layers stacked along the centroids �center of gravi-
ies� based on a hub layer centroid location in the tangential di-
ection, as shown in Fig. 1. Another choice would have been to
tack the blade cross-sectional layer through their respective cen-
er of pressures, but stacking on centroids has the main advantage
f satisfying mechanical constraints to reduce bending stresses
nder rotational loads. Additionally, since a linear stacking line
assing through the centroids of the layers is used, additional
esign variables that may be required for defining a stacking curve
re not necessary. This also helps to avoid increasing the number
f design variables due to additional stacking curve parameters.

The number of layers, the spanwise locations of the layers, and
he layer angles between the layer plane and the axial direction

ight be included in the design parameters. However, presetting
hese variables avoids a dramatic increase in design parameters.

oreover, for the design point of view, a focus on aerodynamic
arameters such as blade angles rather than aforementioned geo-

Fig. 1 „a… Stacking layers and „b… stacking layers on centroid
etric parameters is more suitable for the design engineer.
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For these reasons, the number of layers is fixed and selected as
six. The spanwise locations of the layers are taken to be constant.
The midlayers’ spanwise locations are set equal to that of the
baseline blade, and the hub and shroud layers are set as the hub
and tip sections of the blade, respectively. The shroud layer plane
is set in the shroud axis whereas the remaining layers’ planes are
set in the axial direction in this study. Consequently, the selected
layers in the meridional view and their names are shown in Fig. 2.

2.1 Parameterization of Layers. The most basic and popular
airfoil definition method is the NACA family �31� in which the
blade is defined by a mean camber line and a thickness distribu-
tion. These airfoils cannot be applied to an optimization problem
due to the limited number of airfoils. A recent study shows an
airfoil modification algorithm for layers shaped by adding a thick-
ness distribution to the camber line �32�. However, this method
uses only four design parameters and relies on the baseline cam-
ber and thickness distribution.

Pritchard �33� implemented an 11 variable airfoil with a circular
arc and third-order polynomial curves tangent to each other. How-
ever, polynomial curves suffer from discontinuities due to inflec-
tion points as well. Trigg et al. �34� improved this method by
replacing the polynomial curves with Bezier curves and increased
the number of variables to 17. Anders and Haarmeyer �35� repre-
sented the airfoil with two fifth-order Bezier curves, which re-
quires 20 parameters. Yamamoto and Inoue �36� used cubic
B-splines of camber line and a thickness distribution for wing
sections.

In this study, the design engineers’ traditional aerodynamic de-
sign parameters, such as leading and trailing edge radii, and inlet
and outlet metal angles, are respected while generating the layer
shapes, since these parameters are often imposed by manufactur-
ing mechanical or aerodynamic constraints. The layer is param-
eterized using five angles, as shown in Fig. 3. These angles are the
wedge angles of leading and trailing edges �WLE and WTE�, the
blade inlet and exit metal angles ��LE and �TE�, and the stagger
angle ���. Additionally, the circumferential rotation angle � is
selected as the sixth design parameter since this angle sets the lean
of the blade in three-dimensional geometry.

Consequently, there are six design parameters selected for a
layer geometry shaping. Since there are six predetermined layers
and one more design parameter, which is the number of blades, a
total number of 37 design parameters is used to define one par-
ticular 3D blade profile.

In order to generate the layer profiles, four different curves are
used. Two Bezier curves are selected to represent pressure and
suction sides of the layer and the remaining two ellipse cuts for
leading and trailing edges. The continuity up to the second-order
derivative is ensured at the junction points of these curves. A

Fig. 2 Six layers in the meridional view
complete description of curves and surfaces can be found in the
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iterature �37,38�. The main reason of using Bezier curves instead
f polynomials is that although inflection points can occur with
ezier curves, they are far less than polynomials. Moreover, the
urve definition is simpler, and the degree of the curve can be very
asily increased. More importantly, the parametric form of the
quations allows obtaining the coordinates of the blade points at
ny point �16�.

2.2 Blade Profile Reshaping Algorithm. The blade profile
eshaping algorithm is given in Fig. 4. According to the algorithm,
here are two main steps. In the first step, the baseline blade ge-
metry is parameterized. In the second step, the baseline blade
eometry parameters are modified according to the design param-
ters.

Multifidelity Aerodynamic Models
A commercial RANS flow solver, ANSYS

®
CFX

® software �39�,
s used in this study for evaluating the objective functions. The
ode is capable of solving a three-dimensional steady state com-
ressible viscous Reynolds averaged Navier–Stokes equations in
onservation form.

A zero-equation turbulence model is used in this study in order
o keep robustness and to decrease sophistication �40�. It is simple
o implement and use, is computationally low cost, can produce
pproximate results very quickly, and provides a good guess. The
ero-equation turbulence model in the solver uses an algebraic
quation to calculate the viscous contribution from turbulent ed-
ies. A constant turbulent eddy viscosity is calculated for the en-
ire flow domain.

For 3D meshing, a mesh generator, ANSYS
®

TURBOGRID
™ soft-

are �41�, is used for unstructured automatic volume meshing.
ainly, the program automatically generates a triangular surface
esh and the interior tetrahedral mesh using the Octree approach

42�. Automatic meshing of the volume is done by successive
efinement until all grid density requirements are met. The result-
ng tetrahedral mesh is an adaptive mesh of nonuniform density.

In leading and trailing edge regions of high surface curvature,
he mesh is automatically refined in order to maintain the neces-
ary geometric resolution. This improves the robustness and elimi-
ates the additional user input.

The flow adjacent to suction and pressure side walls are char-
cterized by high flow variable gradients in the normal direction.
oreover, the boundary layer development in the turbine blade is

he main factor affecting the efficiency of the blade. While tetra-
edral cells can be used in such boundary layers, greater accuracy
an be achieved using prism elements. The meshing software au-
omatically arranges layers of prism elements near the boundary
urfaces in order to appropriately model close to wall physics.
risms are generated by extruding the triangular surface mesh.
he prismatic mesh is inflated by a prescribed number of layers,

Fig. 3 Layer geometric parameterization
hich is set as ten layers in this study.
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As a result, a hybrid tetrahedral grid consisting of prism ele-
ments near the boundary surfaces and tetrahedral elements in the
interior of the space with refined leading and trailing edge cells is
automatically meshed.

Since the automatic meshing of the volume is done by succes-
sive refinement, a predefined grid refinement level is used to meet
all grid density requirements. The mesh quality represents a
tradeoff between the accuracy of the solution and computational
cost.

In this paper, two different grid refinement levels is used for a
low quality and a high quality mesh generation, which are called
as coarse grid and fine grid, respectively. The low-fidelity objec-
tive function value is calculated using coarse grid RANS solu-
tions, whereas high-fidelity value is calculated using fine grid.

The two selected experimental test cases are relevant to three-
dimensional flow calculations for viscous flows in axial turbine
calculations: VKI nozzle �43� and UH stage �44�. The VKI low
speed annular turbine blade row test case is used to validate
radial-tangential downstream plane flow variables and to investi-
gate grid quality effect on the flow field. The UH four-stage low
speed annular turbine blade row test case results are used to vali-
date spanwise stage performance parameters for only the first
stage. This test case is used to demonstrate the off-design perfor-
mance predictions of the RANS solver.

3.1 VKI Nozzle Test Case. The VKI test case is a low speed,
low aspect ratio, and high speed annular nozzle guide vane. The
blades have a constant profile over the blade height and are un-
twisted. To account for differences in the upstream flow condi-
tions for an inlet guide vane and an intermediate stage vane, the
annular cascade was tested with skewed inlet end wall boundary

Fig. 4 Blade profile reshaping algorithm
layers. The inlet skew was generated by rotating the upstream hub
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nd wall.
The nozzle is solved using test case boundary conditions of

pstream inlet total temperature, total pressure, and swirl angle,
nd the downstream static pressure using coarse and fine grids.
he coarse and fine grid generation parameters are listed in Table
. For both of the cases, the automatic grid is generated with ten
ayers of prismatic boundary cells with an expansion factor of 1.2.
he aspect ratio of all elements is below 5. Corresponding gener-
ted grids are shown for coarse and fine meshes in Figs. 5 and 6,
espectively.

For the solution of the test case, standard air is used as the
orking fluid. The same settings and methods used in the optimi-

ation problems are set for the solver such as the turbulence
odel, wall roughness, and so on. The calculated average values

f Reynolds number and turbulence are 1.5�105 and 7%,
espectively.

The CPU times for the low- and high-fidelity objective function
alue evaluations are tabulated in Table 2. It is shown that a low-
delity coarse mesh solution is more than four times faster than

he high-fidelity fine mesh solution. Although the accuracy of the
oarse mesh solution is lower than the fine mesh solution, the
olution time is considerably faster for the former, therefore, a
ery suitable low-fidelity model of the objective function solution
or use in the optimization method was developed in this study.

The VKI test case upstream flow conditions are measured at a
istance of X /Cax=−0.70, whereas the rotating hub extends from
/Cax=−0.15 to X /Cax=−4.16. The numerical model takes into

ccount only the measured upstream flow conditions as the inlet

Table 1 Comparison of coarse/fine grid parameters

Coarse grid Fine grid

umber of nodes in surface mesh 7946 31,597
umber of faces in surface mesh 17,292 63,194
umber of nodes in volume mesh 81,885 454,785
umber of tetrahedral elements in volume mesh 263,107 1,955,673
umber of prismatic elements in volume mesh 64,420 206,570
umber of elements in combined mesh 327,527 2,162,243

Fig. 5 VKI test case-coarse mesh
Fig. 6 VKI test case-fine mesh
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conditions of the problem, and the rotating hub is not modeled at
all. Therefore, the remaining part of the rotating hub after the
measurement plane could not be included in the model in any
way.

The VKI test case measurement planes of X /Cax=0.86 and
X /Cax=1.11 are shown in Fig. 7. Contour plots of the static and
total pressure coefficients CPs and CP0 at the measurement planes
of X /Cax=0.86 and X /Cax=1.11 are shown in Figs. 8 and 9, re-
spectively. Contour plots of blade to blade exit flow angle � at the
measurement planes of X /Cax=0.86 and X /Cax=1.11 are shown
in Fig. 10. These figures represent the exceptionally strong three-
dimensional features of the flow field.

According to Figs. 8 and 9, both CPs and CP0 values are in
very good agreement with coarse and fine mesh solutions. The
hub and shroud wall surface region measurements have steeper
gradients with respect to calculated results. This is attributed to
the simplicity of the selected wall roughness and the turbulence
model of the solver. When compared with the fine mesh solution,
the coarse mesh solution resolution is somewhat lower, but at an
acceptable degree. The results have the same order of magnitude
and topology. It can also be said that the measurement plane lo-
cation has no significant effect on the flow parameter prediction.

According to Fig. 10, the exit flow angle � values are in very
good agreement with the coarse and fine mesh solutions. When
compared with the fine mesh solution, the coarse mesh solution
resolution is lower but still at an acceptable degree. The results
have the same order of magnitude and topology. It can also be said
that the measurement plane location has no significant effect on
the exit flow angle parameter prediction.

Consequently, the VKI test case demonstrates the ability to pre-
dict stage losses reasonably well, which in turn is used to calculate
the efficiencies. Flow turning is directly related to torque calcula-
tions and therefore accurate predictions of the flow exit angles are
essential. The solution method is validated against the VKI test
case, which represents an exceptionally strong flow turning. The
coarse/fine mesh calculations showed that although the resolution
of the calculated contours are lower for the coarse mesh, the cal-
culated flow field has the same topology with the same order of
magnitude as of the fine mesh.

3.2 UH Four-Stage Low Speed Turbine. The UH turbine is
designed for a rotational speed of 7500 rpm and a mass flow rate
of 7.8 kg/s, which is set with the aid of bypass. The blading is of
the free-vortex type with a 50% degree of reaction at the middle
section of the last stage. A tip clearance of 0.4 mm is used for the
rotor. Only throughflow radial traverse measurements at the up-

Table 2 Comparison of low-/high-fidelity objective function
calculation CPU times

Low-fidelity High-fidelity

Geometry generation �s� 10 10
Grid generation �s� 157 705
Solver run �s� 827 3564
Total CPU time �min� 16.6 71.3
Fig. 7 VKI test case planes of X /Cax=0.86 and X /Cax=1.11
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Fig. 8 The comparison of low-/high-fidelity CP0 and CPs values with measurements at plane X /Cax=0.86
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tream of the stator and the downstream of the rotor were made.
otal pressure pt, static pressure p, total temperature Tt, and flow
ngle � are measured for design and off-design conditions. The
tage is solved using test case boundary conditions measured at
he upstream inlet total temperature, total pressure, and swirl
ngle, and the mass flow rate using frozen rotor approach. Only
oarse mesh solution is used for the validation of the stage flow
eld, as shown in Fig. 11.
The stator is solved with test case specified inlet and exit

Fig. 9 The comparison of low-/high-fidelity CP0 an
oundary conditions, first. Then, the rotor is solved using outlet

41009-6 / Vol. 132, OCTOBER 2010
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flow conditions of the stator as the upstream boundary conditions
and setting the same mass flow rate. Finally, the test case is solved
for design and six off-design conditions, as given in Table 3. For
the solution of the test case, standard air is used as the working
fluid. The calculated average values of Reynolds number and tur-
bulence is 1.5�105 and 7%, respectively.

Figure 12 shows the measured and computed total pressure dis-
tributions along the span at the downstream of the rotor blade. The

Ps values with measurements at plane X /Cax=1.11
measurements are made in nine radial locations. It is seen that the

Transactions of the ASME
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redictions are 2% to 3% lower than the measured values. This is
cceptable in the uncertainty region of the measured values, which
s indicated as 2%.

Figure 13 compares the measured static pressure values with
espect to the calculated values at on- and off-design conditions.
n any case, the calculated values are slightly lower than the mea-
ured values, and the difference is well within the uncertainty

Fig. 10 The comparison of low-/high-fidelity � values
evel of 2%.

ournal of Turbomachinery

aded 28 May 2010 to 128.113.26.88. Redistribution subject to ASME
4 Multiploid Multi-Objective Genetic Algorithm:
MOGAXL

The MOGAXL developed in this study is based on the MOGA,
which is developed by the “distance based Pareto genetic algo-
rithm” of Osyczka and co-worker �45,46�. The MOGA is a simple
haploid genotype genetic algorithm in which the genotype is re-

h measurements at planes X /Cax=0.86 and X /Cax=1.1
wit
ferred here as composed of a single chromosome.

OCTOBER 2010, Vol. 132 / 041009-7
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However, multiploid—mostly diploid—genotype also exists in
ature, which contains two �diploid� or more sets of single chro-
osomes. Figure 14 shows the flowchart of a multiploid multifi-

elity genetic algorithm for multi-objective optimization problems
MOGAXL� developed in this study. There are major modifica-
ions to the distance based selection and crossover operators of a
imple haploid MOGA to handle multifidelity objective function
alues. Additionally, there are two elite sets in the MOGAXL.

The XL abbreviation stands for “multilevel” fitness assignment.
higher level fitness means that the objective function values are

alculated using a higher-fidelity model. On the contrary, a lower
evel fitness corresponds to a lower-fidelity model calculated val-
es of the objective functions.

The initial population is randomly constructed by generating a
rescribed number of blades. For each individual, a blade shape is
onstructed. An automatic coarse or fine grid is applied, and the
ANS flow solver is run to get efficiency and torque values. The

Fig. 11 UH test case-coarse mesh of stator and rotor

Table 3 The UH test case experimental conditions

Rotational speed
�rpm�

Mass flow
�kg/s�

n-design condition 7500 7.8
ff-design condition 1 7500 6.5
ff-design condition 2 7500 4.6
ff-design condition 3 7500 4.1
ff-design condition 4 5625 5.5
ff-design condition 5 5625 3.9
ff-design condition 6 5625 3.2

Fig. 12 The comparison of the span

downstream plane of the rotor „measur

41009-8 / Vol. 132, OCTOBER 2010
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MOGAXL has two elite member sets �EMS-L and EMS-H�,
which are updated at each generation and are initially empty. The
first individual of the first generation is evaluated using a low-
fidelity coarse grid solution and directly copied to the low-fidelity
elite member set �EMS-L�, and the fitness is assigned. A distance
based fitness value is calculated for the remaining individuals
while the EMSs are updated simultaneously according to domi-
nance principle. Only nondominated individuals are allowed in
the EMSs. Finally, based on distance based low- and high-fidelity
fitness values, MOGAXL operators of selection, crossover, and
mutation are applied to generate the next population. The popula-
tion generation cycle is repeated until a predefined maximum
number of function evaluations or generations. At the end of the
optimization, the EMS-H set consists of the Pareto optimal fron-
tier individuals, which are to be presented to the decision maker.

Similar to the MOGA, the MOGAXL requires an initial popu-
lation of solutions �individuals� in the design space before the
application of MOGAXL operators. Initiation of this population
begins with the selection of two MOGA parameters and one
MOGAXL parameter; they are mainly the population size and
chromosome length, and the number of chromosomes, i.e., genetic
structure, respectively. In this study, only a diploid genetic repre-
sentation, which consists of two chromosomes, is used.

Each design variable set defines a blade configuration with two
corresponding binary strings. The real value of each design vari-
able is expressed as a string of binary digits, which is called as
binary coding, e.g., 101101. The associated chromosomes for
each blade are formed by placing the binary digits corresponding
to each variable back to back in one string.

At the initial generation, the two chromosome strings are set
equal to each other. The top chromosome string corresponds to a
lower-fidelity fitness, and the bottom chromosome string corre-
sponds to higher-fidelity. Consequently, for a diploid MOGAXL,
the top chromosome can be interpreted as the geometry with
coarse mesh, and the bottom chromosome can be interpreted as
the same blade geometry with fine mesh. Note that only the
lowest-fidelity fitness values are assigned at the initial generation.

4.1 Distance Based Multifidelity Fitness Assignment. Al-
though a MOGA uses distance based fitness assignment of the
objective function value as the fitness of an individual, since a
MOGAXL handles multifidelity models to calculate objective
function values, simple distance based fitness assignment is not
possible. Therefore, a modified version of the distance based fit-
ness assignment method is implemented in order to be able to
make use of surrogate models in MOGAXL computations.

The MOGAXL has more than one elite member set. The num-

e total pressure distributions at the
wis

ements are shorter…
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er of EMSs depends on the number of surrogate models. Since
nly one low-fidelity model is used in this thesis, two EMSs will
e implemented, namely, the EMS-L and EMS-H, corresponding
o lower-fidelity solution and the higher-fidelity solution, respec-
ively. As in the case of a MOGA, only one standard population Pt

xists where GA operators are performed. Among the EMSs Et
L

nd Et
H, the Et

L contains all nondominated lower-fidelity solutions
ound so far, where t indicates the generation number. Similarly,

t
H contains all nondominated higher-fidelity solutions found so

ar. According to the multifidelity distance based fitness assign-

Fig. 13 The comparison of the spa
the downstream plane of the rotor
Fig. 14 Flowchart of the MOGAXL
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ment method, two �or more depending on the number of chromo-
somes� fitness values are assigned to each solution in Pt based on
its farthest distance from the Et

L and Et
H members. For each EMS,

the corresponding relative distance dk�x� of a Pt individual from
an elite member k in EMS and the latent potential value pk of an
elite member k in EMS are calculated separately and are used to
determine the low- and high-fidelity fitness values.

The relative distances are calculated according to its distance
from the elite set Et

l= �e1
l ,e2

l , . . . ,eK
l �, where K is the number of

elite members in the lth-level EMS. The diploid MOGAXL has
two l values corresponding to low-fidelity fitness and high-fidelity
fitness, L and H, respectively.

For each individual in the Pt the relative distances from all elite
members in Et

l are calculated by

dk�x� =��
i=1

I 	 f i
l�ek

l� − f i
l�x�

f i
l�ek

l�

2

for k = 1,2, . . . ,K

where f l terms represent the l-fidelity calculated values of the
objective functions.

For the calculation of the l-fidelity fitness value of the indi-
vidual x, the minimum distant elite member in the Et

l is consid-
ered, where the minimum distance is found as

dk� = min�dk�x�� for all k = 1,2, . . . ,K

where the index k� indicates which of the existing elite members
in Et

l is nearest to the individual x.
After the determination of the minimum distance and the mini-

mum distant elite member, the individual is checked whether it is
dominated by the elite members of Et

l or not. If the individual is
a new Pareto solution, the Et

l is updated by adding the new non-
dominated solution x and removing members ek

l, which are domi-
nated by x. The l-fidelity fitness and the corresponding latent po-
tential values of the individual x �which is now an elite member in
the Et

l, too� are calculated using

Fl�x� = pk� + dk�

pk = Fl�x�

where Fl�x� term represents the l-fidelity fitness values, and index
k belongs to the new elite member in the Et

l.
On the other hand, if the individual x is dominated by any elite

member in Et
l, then it is not accepted in the Et

l and its l-fidelity

ise static pressure distributions at
nw
fitness is calculated as follows:
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Fl�x� = �pk� − dk� for Fl�x� � 0

0 for Fl�x� � 0
�

ote that in this equation, a minimum fitness value of zero is
ssigned for avoiding non-negative fitness values.

4.2 Regeneration and High-Fidelity Function Evaluation.
t the initial generation, only low-fidelity objective function val-
es are calculated for every individual and the first member of the
nitial population P0 is directly copied to the empty E0

L set while
random latent potential value pk is assigned to it. Now, there is

n elite member with a latent potential value in the EMS-L, and
his will help in setting the low-fidelity fitness values of the re-

aining members in the initial population P0 and the new mem-
ers of the next generations.

Once the low-fidelity fitness values of all individuals in the
opulation are evaluated while the EMS-L is constantly updated at
he initial generation, multifidelity tournament selection is carried
ut. None of the individuals in the first generation has high-
delity fitness values assigned, and the Et

H set is left empty at the
rst generation.
At the end of the fitness assignment, the multifidelity selection
ethod, full and level crossover operators, and mutation, which

re discussed later, are implemented.
Before starting the fitness assignment calculations of the new

eneration, the corresponding latent potential values of all elite
embers in the EMS-L and EMS-H are replaced by that of maxi-
um among the elite members. That is,

pk = max�pk�e�� for all k = 1,2, . . . ,K

onsequently, all elite members in each EMS are assigned an
qual latent potential value regardless of their previous values or
osition in the objective space. This ensures that no distinction is
ade between elite members in an EMS, since they are all non-

ominated. Note that the latent potential values of EMS-L and
MS-H are not the same.
The costly objective function evaluation is the main concern for

egeneration in the MOGAXL. In the MOGA, high-fidelity objec-
ive function evaluation is carried out to assign fitness at each
eneration. However, since the main aim and also the advantage
f MOGAXL is reducing the number of costly high-fidelity ob-
ective function evaluations, a decision must be made for which
evel of fitness will be assigned and when at each new generation.

As indicated at the initial generation, only the lowest level fit-
ess values are assigned for each individual. Then, the selection is
erformed by comparing the lowest-fidelity level fitness values.
or a given probability of occurrence, full crossover and mutation
perators are implemented on selected individuals. In the next and
ubsequent generations, the assignment of a higher level fitness
alue for an individual is decided according to previous selection.
f in the previous selection, the selected individuals’ low-fidelity
tness values are close each other enough according to confidence

evel, then in the next generation, the same level and one level
igher fitness values for both individuals are assigned. If in the
revious selection, the selected individuals’ fitness values are far
way from each other according to confidence level, then only
hat level fitness value of the individual is assigned in the next
eneration. For the specific case of a diploid MOGAXL, the de-
ision of high-fidelity fitness assignment is given in equation form

s
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If
FL�P1�−FL�P2�

min�FL�P1� ,FL�P2��
�CL then evaluate FL�C1�

Else evaluate FL�C1� and FH�C1�
Endif

Note that if the individuals have already assigned the highest level
fitness values, then repeated evaluation is unnecessary.

The EMS update works only for fitness assigned individuals. If
a high-level fitness is not yet assigned, this individual is not in-
cluded in the dominance check of EMS-H. On the other hand, if
the individual is going to be assigned a high-level fitness, then
dominance check procedure is applied for the EMS-H update.
Note that if the EMS-H is empty, the first individual to be as-
signed a high-level fitness will be directly added to the EMS-H.

4.3 Multifidelity Tournament Selection. One of the biggest
disadvantages of the MOGA is that although one can use a low-
fidelity fitness model such as ANN or a coarse grid, the MOGA is
not able to converge to the global optimum in dynamic problems.
That is because of the assignment of low-fidelity fitness values to
the chromosome of an individual at the initial generations, the
genes �binary digits� coming from ancestors penetrate the chil-
dren’s chromosomes with low-fidelity fitness values. For a
MOGA, the only operator to get rid of these low-fidelity well
performing but high-fidelity bad performing genes is mutation,
which has a very low probability of happening to an individual.
Therefore, the MOGA will eventually converge to a local opti-
mum rather than the global.

On the contrary to optimizing the problem in a dynamic envi-
ronment using a MOGA, fitness values are separately assigned to
each chromosome of an individual for each surrogate model cal-
culation in a MOGAXL. Each fitness value is assigned using ei-
ther the exact or approximate solution of the objective function.

The selection method, which is developed for multiploid
MOGAXL, includes an additional input parameter called the con-
fidence level �CL�. Expressed in percentage, the confidence level
indicates the expected accuracy of the surrogate model used. A
confidence level of 100% is assigned for the highest-fidelity
model solution of an objective function. Therefore, the bottom
level fitness values have 100% confidence level automatically.

On the other hand, lower percentages of confidence levels are
assigned for lower-fidelity fitness levels. There might not exist a
unique error percentage between the high- and low-fidelity accu-
racies of the objective function values. Nevertheless, confidence
level is set by finding the mean deviation of the calculated objec-
tive function values between surrogate and exact solutions, and it
can be expressed as

CL � 1 −
fexact − fsurrogate

fexact

This equation is calculated for a few points in the design space
and the average value can be set as the confidence level. Note that
each objective function surrogate model is assigned a unique con-
fidence level throughout the optimization. In the case of this study,
since diploid genetic structure is used, and only one surrogate
model is used, only one confidence level is set for the low-fidelity
level fitness value.

Multifidelity tournament selection is used in the MOGAXL.
The population is sorted randomly, and a pair of blades is selected
as x1 and x2 from the sorted list. Starting from highest level �most
accurate� fitness to lower levels, the existence of fitness is
checked. If any of the two individuals do not have a fitness as-
signed on a given level, lower-fidelity level existing fitness values
are checked. For a diploid MOGAXL, if the high-fidelity fitness
values exist �calculated at the previous generation� for both x1 and
x2, then the selection is performed based on high-fidelity fitness
values, FH�x1� and FH�x2�, respectively. Else, the selection is per-

L L
formed based on low-fidelity fitness values F �x1� and F �x2�.
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he detailed flowchart of the process is given in Fig. 15. At the
nd of the selection operator, two parents P1 and P2 will be ready
o be mated by the crossover operator to obtain a child.

4.4 Full/Layer Crossover Operators. Once the parents to be
ated are determined, crossover is applied to the parents accord-

ng to a preselected probability. The crossover operator determines
hether the information coming from the genes of the selected
arents will be transferred to the next generation. Therefore, for a
roper flow of information from past to future generations, and in
rder to prevent the mixing of low- and high-fidelity information,
he crossover operator of a simple MOGA is carefully modified.
onsequently, in a MOGAXL, two different kinds of crossover
perators are used simultaneously in which both of them imple-
ents the single point crossover technique.
There are mainly two quality levels of information flowing

rom ancestors to the next generation in a MOGAXL when com-
ared with a MOGA in which only fixed quality �accuracy� infor-
ation is transferred. These are the better performing genes ac-

ording to exact fitness values �highest-fidelity fitness levels�, and
he better performing genes according to surrogate fitness values
lower-fidelity fitness levels�.

If the selected individuals’ lower level fitness values are far
way when compared with the confidence level, the information
oming from the lower level genes can be used to guide higher
evel chromosomes. Therefore, “full crossover” is used in this
ase. On the other hand, if the selected individuals’ lower level
tness values are within the confidence level, the information
oming from the lower level genes cannot be used to guide higher
evel chromosomes, since one cannot decide if the better perform-
ng individual according to low-fidelity fitness is really perform-
ng better when exact fitness is compared. Therefore, “level cross-
ver” is used in that case. For the specific case of a diploid GA,
he decision of full versus level crossover is shown in Fig. 15 and

Fig. 15 Multifidelity tournament selection
iven in equation form as
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If
FL�P1�−FL�P2�

min�FL�P1� ,FL�P2��
�CL then full crossover

Else layer crossover
Endif

The full crossover operator requires chromosomes of all levels
of selected individuals, which are crossed over at the same point
simultaneously. This ensures that the better gene information is
passed on all levels. The illustration of a full crossover is given in
Fig. 16. The crossing point is chosen randomly.

The level crossover operator works only on one layer. This is
the layer in which the selection of the individuals is performed
according to this layer’s fitness. Level crossover prevents any
false information to be passed to higher level chromosomes. The
crossover is performed on only the chromosome of the selection
performed level. The illustration of a level crossover is given in
Fig. 17 for the initial population.

Mutation is a bit change in a chromosome that occurs during
the crossover process. In a MOGAXL, the mutation operator is
only applied to the chromosomes of selection performed levels.
Mutation probability is set as the probability of performing muta-
tion on a bit of the chromosome in which the selection is per-
formed on.

5 Optimization Results

5.1 Optimization Problem Definition. Two objective func-
tions are selected for the current optimization procedure: the blade
adiabatic efficiency and the torque. For maximization of the both
objective functions, two optimization cycles are run using the
MOGA and the MOGAXL separately, and the design space is
constrained by the same boundaries given in Table 4.

The total adiabatic efficiency � is calculated by the RANS
analysis solution using the following equation:

� =
1 − T0ABS,2/T0ABS,1

1 − �P0ABS,2/P0ABS,1�	−1/	

Total temperature T and total pressure P are the mass flow
weighted average quantities at the inlet �1� and exit �2� planes.

Fig. 16 Diploid MOGAXL full crossover illustration „for two
children setting…
Similarly, torque T is calculated from
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T = N � p · A

n this equation, pressure p is multiplied by tangential projection
f the blade surface area of the cell faces A and summed up all of
he cell faces on the blade surface. Then, the total torque is found
rom multiplying this result with the number of blades in a row.

5.2 Results. The baseline UH rotor blade is optimized using a
aploid MOGA and a diploid MOGAXL for comparing the per-
ormance of a MOGAXL. Table 5 shows the MOGA and

OGAXL parameter values used in the optimization processes.
The high-fidelity Pareto-optimal frontiers after 100 generations

f MOGA and MOGAXL are shown in Fig. 18. The figure repre-
ents the tradeoff between efficiency and torque and the decision
aker may chose one blade shape out of all individuals in the
areto-optimal frontier according to higher level information,
uch as stress calculations or rotor/stator interactions. In this fig-
re, baseline rotor blade is also pointed for comparison. As long
s maximizing torque and efficiency, the baseline blade is non-
ominated by all MOGA optimum solutions in the Pareto-front,
ut the baseline blade does not dominate any MOGA optimum
olutions either. This indicates that after 100 generations, the

OGA did not converge sufficiently to the global optimum fron-
ier yet.

On the other hand, the MOGAXL succeeded in finding as many
s 11 nondominated optimum blades that also dominates the base-
ine blade. Although the Pareto-optimal frontier of the MOGAXL

Fig. 17 Diploid MOGAXL level crossover illustration

Table 4 Design

Layer

Min

� �

1 hub 10/20 0.1/3
2 15/25 −2 /−0.1
3 20/30 −3.5 /−1.5
4 30/40 −5 /−3.5
5 35/45 −7 /−5

6 tip 50/60 −8 /−6
N
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may not be the global frontier of the problem, the MOGAXL will
eventually converge to it by increasing the number of generations
of the optimization cycle.

The diversity of the optimal solutions is a main concern in
multi-objective optimization problems. In the present case, the
nondominated individuals are broadly spread from a maximum
torque value of 227 N m to a maximum efficiency value of
86.8%. Although it is desired to find many nondominated solu-
tions in the objective space, because of the complexity of the
problem, only 11 optimum solutions could be achieved. In case of
increasing the number of generations of the optimization loop, the
MOGAXL may converge to a better Pareto-frontier with more
nondominated blade shapes.

From the beginning of the first generation until the end of the
optimization, the number of nondominated individuals in the elite
member set is given in Fig. 19. Only high-fidelity fitness assigned
elite members of the MOGAXL are counted per generation. At the
initial generations, the MOGAXL found twice as much elite mem-
bers compared with the MOGA. Besides, the MOGA has 15 elite
members at the end of the generation, and all of these members
are dominated by MOGAXL elite members.

The second objective of this paper is the acceleration of the
optimization cycle in order to decrease the total computational
cost. This cost is evaluated by counting the number of high-
fidelity objective function evaluations in the optimization process.
Figure 20 shows the number of high-fidelity evaluations with re-
spect to the generation number of the first ten generations.

The MOGAXL operates exactly the same as the MOGA after
all of the individuals in the population are assigned their high-
fidelity fitness values. Because, in this specific case, the
MOGAXL assigned the high-fidelity fitness values to every indi-
vidual of the tenth generation population, Fig. 20 is plotted until
the tenth generation. After the tenth generation, both the MOGA
and MOGAXL will perform 100 evaluations at each generation,
which corresponds to the population size.

At the initial nine generations, the MOGAXL used very little
computational resources when compared with the MOGA. In

ace constraints

m/maximum values

LE �TE WLE WTE

/−50 60/75 17/35 3/9
/−45 60/75 17/35 3/9
/−35 60/75 17/35 3/9
/−20 60/75 17/35 3/9
/10 60/75 17/35 3/9
/20 60/75 17/35 3/9

26/33

Table 5 Optimization parameters of the MOGA and the
MOGAXL

Parameter MOGA MOGAXL

Number of chromosomes 1 2
Design parameters 37 37
Chromosome length 219 219
Number of child 1 1
Maximum generation 100 100
Population size 100 100
Elitism Yes Yes
Crossover probability 90% 90%
Mutation probability 2% 2%
Initial latent potential pk 2 2
Low-fidelity confidence level - 50%
sp

imu

�

−60
−55
−45
−35

0
10
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hese 9 generations 293 and 900 high-fidelity RANS solutions are
equested by the MOGAXL and MOGA, respectively. Conse-
uently, the ninth generation of the MOGAXL costs less than the
hird generation of MOGA in terms of computational expenses.
herefore, in order to compare the Pareto-optimal frontiers of
oth algorithms fairly, the ninth generation EMS-H of MOGAXL
nd the third generation EMS of MOGA are compared in Fig. 21.

According to Fig. 21, the MOGA could only find three elite
embers in the Pareto-optimal frontier, and only one of them is

ondominated by the MOGAXL Pareto-optimal frontier. Whereas,
he MOGAXL already has eight nondominated members, and
nly two of them are dominated by the MOGA. Additionally, the
OGAXL has an excellent distribution of elite members when

ompared with the diversity of the simple MOGA.

Conclusion
A multiploid distance based MOGA aerodynamic shape design

ptimization tool capable of handling surrogate models for a tur-
ine blade has been successfully developed. The two objectives of
he study were addressed by implementing a multiploid chromo-
ome structure, two elite preserving sets, multifidelity fitness as-
ignment, and modified crossover, selection, and mutation opera-
ors. The two-objective maximization problem demonstrates the
uccess of the optimization tool regarding the accelerated global

ig. 18 Pareto-optimal frontiers of the MOGA and the
OGAXL after 100 generations

Fig. 19 Number of elite members in the EMS-H
Fig. 20 Computational cost comparison

ournal of Turbomachinery
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optimization. This study showed that the developed multiploid
genetic algorithm optimization method offers a promising tool to
multi-objective optimization problems involving surrogate mod-
els, while shortening design cycle and reducing design costs in the
near future.
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